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ABSTRACT

A programmable smartphone connected to a built-in image sensor is a portable and low cost instru-

ment for analysis based on chromogenic reagents. The RGB values collected from an image are used

to quantify concentrations in colorimetric tests. Measuring color demands a sufficient and constant

illumination to report results with great accuracy and repeatability. However, a smartphone cap-

turing an image is involved in issues related to ambient light variability. A smartphone application

may be supported by a wide variety of devices, employing different camera technologies. The color

pixels values are expressed in different ways depending on the software used for processing the

image. This research is attempting to identify and evaluate existing image processing techniques

in order to design a Mobile Sensing System (MSS) to quantify the concentration of an analyzed

substance by collecting the color information contained in the image pixels.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The smartphone applications developed for quantitative analysis purposes based on colorimetric

detection are increasing in the latest years. These applications are based on correlations between

the RGB values of an image and the concentrations of a substance in a specific environment.

Basically this type of analysis use a membrane containing a chromogenic reagent that experiments

a color change while the concentration of a specific substance is varying, typically classified as

optical sensors.

This research is motivated by a previous personal experience working on optical sensors. The

results of these previous works, made in collaboration with other authors, are summarized in two

published papers [1] [2]. As described in these publications, the presence or absence of substances

such us heavy metals and sulphide in water can be quantified by collecting the color pixels from

a digital image. This quantification method simplifies the analytical procedure through allowing

analyses of colorimetric tests in situ and out of lab. The images analyzed are captured using a

digital camera. Then, the images are processed by an ad hoc developed PC software that allows

the user to quantify the concentration.

This procedure opens the door to the design of a mobile sensing system capable to quantify a

concentration by gathering the color information of an image captured by a smartphone camera.

Therefore, there is a need to further research this topic to explore its use employing a smartphone

as a color measuring device. Their advantages include the portable capability of the artefact and

the reduction of costs. However, a smartphone application may be used by a wide variety of devices.

The mobile devices technology vary in depend on price, date of acquisition, brand, operative system,

and so on. This fact requires applications with inter-phone repeatability. Moreover, capturing

images from a mobile device involves a great variability on parameters such as pixel resolution, ISO

number, white calibration, and every configurable setting in a color camera. This variability has a

direct and profound impact on color quantification.
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1.2 Objective

This research is attempting to identify the existing algorithms used for color image processing

and evaluate them through designing a prototype able to quantify the concentration of an analyzed

substance by a correlation to the color information of the image pixels. A color quantification is

required, the application needs to be able to obtain colorimetric values that describe the measured

color and determine the concentration of a substance after the reaction of an optical sensor.

1.3 Research questions

The main questions that required responses are:

• Is a smartphone a capable device for quantifying the concentration of a substance in colori-

metric tests?

• How an image can be processed in order to report results with inter-phone repeatability?

1.4 Research methodology

Color image pixels and substance concentration are the two variables in the research data

generation. The pixels collection provides numerical data that can be used in a quantitative analysis.

The result obtained after correlate the two variables provides relevant information for designing

the artefact. The improvement of the artefact requires both, the manipulation of the pixel data

and the evaluation of the results obtained after the action.

1.4.1 Research Strategy

The research is involved in the following process:

• Analyze the quantification procedure in a colorimetric test.

• Design a prototype to solve the problems described.

• Evaluate the design.

• Provide results.
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1.4.2 Evaluation

The application needs to be evaluated to demonstrate that the artefact designed meets the

objective established. In this way, the results will show if the artifact is able or not to solve the

problem described. The accuracy of the artefact will be qualified by the comparison with a reference

measuring instrument. On the other hand, the inter-phone repeatability will be qualified trough a

comparison among images captured from different smartphones technologies.

1. Evaluate the accuracy of the quantification: the reaction of the chromogenic reagents are

measured using both, a spectrophotometer as a measuring instrument and the smartphone

application. The data is compared to qualify the artefact and evaluate the accuracy.

2. Evaluate the inter-phone repeatability: different images obtained from different devices are

tested in an equal environment in order to evaluate the behavior of the artifact facing problems

described such as image size or device technologies variability.
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CHAPTER 2

STATE OF ART

2.1 Colorimetry

2.1.1 What is color?

Color is a sensation created in response to excitation of our visual system by electromagnetic

radiation or light. In other words, color is the perception generated in the brain when the light

reach the retina. The light perceived is constrained by the visible region of the electromagnetic

spectrum with wavelengths in an approximated range from 400nm to 700nm. Color can be de-

scribing accurately by measuring the physical power or radiance of the incident light. The result

is a spectral power distribution (SPD), commonly divided into 31 areas, each representing a 10nm

band (figure 2.1). [3]

Figure 2.1: The spectral power distribution

The human retina contains cones, three types of color photo-receptor cells which respond to

radiation at different spectral sensitivity peaks in short (S, 420 nm to 440 nm), middle (M, 530

nm to 540 nm), and long (L, 560 nm to 580 nm), represented in figure 2.2. A fourth type of
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photo-receptor cells, called rods, are also present in the retina. Rods cells are more numerous and

sensitive than cone cells. However their functions are focused on vision with low light intensity,

having almost no role in color vision.

Figure 2.2: Human spectral sensitivity to color

2.1.2 Colorimetry

In color science, colorimetry is the area responsible of giving a description and a specification

of a color. Based on the fact that the human eye use three types of color photo-receptor cone

cells, three numerical values are needed to describe a color. The figure 2.3 shows the Commission

internationale de l’clairage (CIE) chromaticity diagram, where any visible color can be mapped by

defining the tristimulus value [4] [5].
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Figure 2.3: The C.I.E. Chromaticity Diagram

Nonetheless, a color can be described by the combination between brightness and chromaticity.

For instance, a color white is a bright version of a color grey, being equal in chromaticity and

different in brightness. In the CIE XYZ color space the Y parameter is a measure of luminance.

The chromaticity of a color is then specified by the two derived parameters x and y, two of the

three normalized values being functions of all three tristimulus values X, Y, and Z [6]

x = X/(X + Y + Z) (2.1)

y = Y/(X + Y + Z) (2.2)

z = Z/(X + Y + Z) = 1 − x+ y (2.3)

2.1.3 Color Space

A color space or color model is formed by a set of numerical values able to define a singular

color. The three components of a color can be defined as many different ways as color spaces

existing. Color in multimedia applications demands a suitable method for representing the color

signal perceived by a device. Selecting a color representation must to take into account how the
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signals are generated and which information is needed from these signals. As represented in the

figure 2.4, the color spaces are constrained by their volume of colors or gamut. The color models

may be used to define colors, discriminate between colors, judge similarity between colors and

identify color categories for a number of applications [4].

Figure 2.4: Examples of color spaces

In the additive color reproduction, the colors are represented by combining the primaries and

the fraction of each mixed primary. In image and video devices the spectra from red, green and

blue light beams are physically summed at the surface of the projection screen (figure 2.5).

Figure 2.5: Additive color reproduction RGB
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2.2 Devices for measuring color

2.2.1 Ultraviolet-visible spectrophotometer

Ultraviolet-visible spectroscopy or ultraviolet-visible spectrophotometry (UV-Vis or UV/Vis)

refers to absorption spectroscopy or reflectance spectroscopy in the ultraviolet-visible spectral re-

gion, using light in the visible and adjacent (near-UV and near-infrared) ranges. The absorption

or reflectance in the visible range directly affects the perceived color of the chemicals involved [7].

2.2.2 Colorimeter

A colorimeter is a device used in colorimetry. The device measures the absorbance of particular

wavelengths of light by a specific solution. This device is most commonly used to determine the

concentration of a known solute in a given solution by the application of the Beer-Lambert law,

which states that the concentration of a solute is proportional to the absorbance. [8].

2.2.3 Image sensors

The spectacular growth of the mobile application development converts a smartphone in a

multitask device. Cameras, GPS, microphone, accelerometer... are embedded sensors that bring

an opportunity to develop new applications useful to society. Nowdays we can find apps used

for social networks, healthcare, entertainment, education, safety, data analysis, not only using the

built-in sensors but also external ones. The advance of technology allows to reduce the unit build

cost of the embedded sensors and the devices is becoming in a low cost way to report or take

actions by managing the behavior of a sensor[9]. All these circumstances give rise to the area of

mobile phone sensing research. A MSS requires a user level application running on the phone for

reading an internal phone sensor, or external sensors, reporting sensed data. For this purpose,

the phone operating system must offer an Application Programming Interface (API) to manage

the data reading and reporting [10]. During the latest years smartphone cameras have been used

across a wide variety of domains in computer vision researches trying to emulate the basic functions

of the human vision system. The analysis of the user environment through images and videos is

a very interesting point in safety applications [11] and also in applications for users suffering from

visual impairment [12].

Smartphone cameras can be used as well for colorimetric detection through processing the RGB

values from the pixels of an image. In that case, mobile devices can be used in bioanalysis with a
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wide variety of Cellphone-based quantitative analysis [13]. Today smartphones come with at least

one camera to get images and videos. The method used to digitize images is a Bayer filter mosaic,

a color filter array for arranging RGB color filters on a square grid of photosensors. Its particular

arrangement of color filters is used in most single-chip digital image sensors installed in cameras and

scanners to create a color image. The figure 2.6 is representing the pattern formed by 50 percent of

green, 25 percent of red and 25 percent of blue, hence is also called RGBG, GRGB, or RGGB[14].

Figure 2.6: Bayer filter used in Complementary Metal-Oxide Semiconductor (CMOS)
image sensor

2.3 Color Image processing

2.3.1 Introduction

The common used smartphones operative systems provide a software to manage different camera

settings such as white balance, focus, zoom, flash and in some cases (smartcameras) time exposure

and aperture parameters. Once the image has been captured is digitalize and compressed usually

in a JPG format with an embedded sRGB ICC profile represented in figure 2.7. Images are formed

by a matrix of pixels, each pixel contain values for each canal R G B.

9



Figure 2.7: sRGB space

2.3.2 RGB color space

Basically, an RGB color model is a set of colors defined by the chromaticity of red, green and

blue. It can be represented in a cube containing as many colors as possible primaries combinations,

where the brightest point corresponds to the coordinate (1,1,1) and (0,0,0) to the darkest one. Each

color contains the intensity of each channel and are expressed from 0 to 1 (when the values are

normalized), integer values (i.e: 0-255) and percentage per channel among others.
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Figure 2.8: RGB color space

A digital image can be described as a set of digital values or pixels. A pixel is the smallest

individual element in an image containing the color information for each position inside a two

dimensional array (figure 2.9). The amount of pixels inside an image vary in depend on the image

acquisition resolution. The resolution of an image is expressed as an NxM matrix, where N is the

number of pixels columns (image width) and M is the number of pixels rows (image heigth).

Figure 2.9: A 4x3 pixel array
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2.3.3 Normalized RGB

Normalized RGB is a representation which is easily obtained from the RGB values by a simple

normalization procedure:

r = R/(R+G+B) (2.4)

g = G/(R+G+B) (2.5)

b = B/(R+G+B) = 1 − r + g (2.6)

Since the sum of the three normalized components is known, the third component can be omitted,

reducing the space dimensionality. The normalized values or pure colors, do not take into account

the brightness parameter, they are only defining the chromaticity of r and g. Normalizing RGB

values is an interesting point to avoid the effects of illuminant variability on matte surfaces[15][16].

2.3.4 HSV color space

HSL, HSV, HSI, or related models are commonly used in computer vision and image analysis

for colorimetric detection or image segmentation. It is very useful in applications focused on object

detection, object recognition and image analysis among others. The R, G, and B intensities in a

digital image are depending on the intensity of light reflected by an object. For that reason, image

analysis are better described using parameters such as hue, lightness and saturation. The hue is

the parameter representing the chromaticity of the color perceived (yellow, red, blue...), lightness

is the brightness relative to the brightness of a similarly illuminated white and saturation is the

perceived intensity of a specific hue (figure 2.10) [1] [17] [18].
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Figure 2.10: HSV color space [17]

2.3.5 White calibration

J.A. Toque et al.[19] compensate the effect of the illuminant variability using the equation 2.7.

This white calibration is trying to mitigate the uneven reflection of light from the surface of the

object.

T ′i= i value of a pixel of the image

Xb= average pixel value of the white background

Bi= i value of a pixel of the white background

Ti= new i value of a pixel of the image adjusted

T ′i = Ti(
Xb

Bi
) (2.7)

Through establishing a reference color in the image the rest of color values can be calibrated.

2.3.6 Thresholding and edge dectectors

The simplest thresholding methods replace each pixel in an image with a black pixel if the

image intensity I, is less than some fixed constant T, then:

Iij < T (2.8)

Color images can also be thresholded by separating the RGB channels of an image. After that,

channels can be used individually, or combined with an AND operation. Edge detectors tech-

niques are often used in application for image segmentation and object detectors. Sobel, Canny or

Laplacian are the most used for this purposes [20].
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2.4 Optical sensors

There is an increasing demand to measure the physical and chemical properties of an environ-

ment. For that reason there is a need to change the classical analytical methods with more robust

and modular sensors that simplify the analytical procedure. A sensor is a device capable of record-

ing directly, continuously, and reversibly a physical parameter (physical sensor) or the presence or

concentration of a chemical species (chemical sensor). A chemical sensor system consists of a sensi-

tive layer, a transducer, a data-acquisition process, and an evaluation. This research is focused on

optical sensors that basically consist in the interaction of electromagnetic radiation with a sample

after a recognition event that modifies different optical parameters that may be recorded [21]. The

increasing interest in chemical analysis based on color changes bring advantages such as simplicity

of use, facility to combine with portable and widely distributed imaging devices and friendly an-

alytical procedures in out-of-lab applications for in situ and real-time monitoring [18]. The main

inconvenience analyzing images from a portable device is the variability of the environment where

the picture is captured. Variable conditions such as focal distance, angle, illumination from the

camera to the object have to be taken into consideration in order to obtain the best accuracy and

repeatability for color measurements.

Ariza-Avidad et al [1][2], employ computer vision-based analytical procedures to determine

a concentration of substances such as heavy metals or sulphide in water. The change in color

measured from the image of a disposable membrane acquired by a digital camera using the hue

coordinate (H) of the HSV color space as the analytical parameter is able to sense the substances

in aqueous solution. The chemical sensor is photographed before and after the reaction. Then,

the images are processing using thresholding techniques that allow to isolate the region of interest

(ROI). The H parameter is obtained from the image pixels and is correlated to a concentration.

Although the color space used is the HSV, only the information related to chromaticity is used

(H), ignoring the saturation and brightness values that are closely related to the intensity of light.

Furthermore, the images are captured using a cube light box (figure 2.11) that ensures an optimal

image capture in terms of illumination, angle and focal distances.
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Figure 2.11: Cube Light Box [2]

This method for analyzing optical sensors simplify the classical methods employed in a lab

(where results are typically obtained using a spectrophotometer), reducing costs and allowing an

in-situ analysis. However the method require an external software running on a computer to process

the images, reducing the portable capacity of the instrumentation.

Aree Choodum et al [22] employ an Iphone as a device for a rapid quantitative analysis of

trinitrotoluene (TNT) in soil. In this work the concentration of TNT are correlated to the RGB

values of the image captured after the reaction (figure 2.12).

Figure 2.12: Correlation between TNT concentration and RGB values [22]
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To evaluate the accuracy of the color measured using the smartphone, a comparison between

an image captured by an Iphone and another one captured by a DSRL camera was carried out,

obtaining satisfactory results that allows an user to determine the concentration of TNT in soil using

an Iphone. However, in this research there is no information about the image capture conditions

and there is no evaluations explaining the behavior of the application running in different devices.

The camera software of the smartphones tries to compensate the ambient light. They are

basically designed to improve the image quality, but do not take into account the color fidelity of

the photographed object. Therefore, this kind of investigations are suitable for an unique device.

Attempting to avoid the capture of images under ambient light and trying to maintain the

portability of the instrumentation, the research carried out by Ahmet F. Coskun et al [23] brings

a possible solution to the problem described. As represented in figure 2.13, an opto-mechanical

attachment installed at the back of the cellphone eliminates possible image artefacts due to the

hand motion of the user, creating a more repeatable, reliable and sensitive platform for personal

use.

Figure 2.13: An opto-mechanical attachment installed at the back of the cellphone [23]

Obviously, this solution requires the manufacture of one attachment for each existing device

model. Therefore, the given solution is not focused on the use of multiple devices but to convert a

smartphone in a reliable tool for colorimetric detection.

An approach for an application able to ensure the inter-phone repeatability for the analysis

of colorimetric sensors is described in the research carried out by Ali K. Yetisen et al [24]. The
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designed algorithm considers that the application developed for sensing glucose, protein and pH

in urine, is able to work in a wide variety of devices and operating systems and also that the

image capture takes place under different environmental conditions. To evaluate the application,

the authors use two different operating systems (Android and iOS) on both, high and low-end

smartphones (i.e. iPhone 5, 8 MP camera; and Samsung I5500 Galaxy 5, 2 MP camera) and the

images are taken under ambient light. The RGB values obtained from a portion of the image are

converted to tristimulus values, X, Y, Z. The Z parameter is ignored and the color is expressed as

2D chromaticity values.
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CHAPTER 3

ARTEFACT DESIGN

3.1 Printed sulphide optical sensor

In order to find out which are the requirements for designing an artefact able to quantify the

concentration of a substance using an optical sensor, a set of experiments were carried out employing

a sulphide sensing membrane, following and replicating the same procedure than in previous work

published by Ariza-Avidad et al.[1].

The experiments were carried in collaboration with the ECsens research group [27], in the

labs of the Analytical Chemistry Department, University of Granada. As described in the related

paper, a chromogenic reagent that experiment a hue shift in the presence of sulphide in water can

be used as colorant, taking part in an ink formulation. The ink can be printed by inkjet printing

technologies as described in figure 3.1. The printer processes a digital file containing a pattern

previously designed.

Figure 3.1: Printed Sensors workflow
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3.2 Pattern design

The pattern was designed using Adobe Illustrator CS6 software (Adobe Systems Inc., San Jose,

CA, USA). It consists in a circular shape with a diameter of 3mm with four repetitions. The digital

file generated is a monochrome bitmap file of 1-bit per pixel (1bpp). That means that the values

of those pixels defining the printed area is 1, being 0 for the ones defining the non-printed area

(figure 3.2).

Figure 3.2: Pattern design

3.3 Printing optical sensors

The sulphide disposable sensing membranes were printed using a Fujifilm Dimatix DMP-2831

printer (Fujifilm Dimatix, Inc., Santa Clara, CA, USA) on a white Biodyne A nylon membrane

(Pall Corporation, Port Washington, New York,USA). The cartridge of the printer is containing

the chemical sensor ink and the pattern designed is processed by the printer to generate the final

plot (figure 3.3).
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Figure 3.3: Printing Optical Sensors

3.4 Optical sensor reaction

The response of sensing membranes to sulphide was evaluated from different sulphide standard

solutions from 10−7M to 10−4M by adding the volume of each standard to a 10 mL polyethylene

plastic tube with pH adjusted 2 mL of 0.5 M buffer phosphate solution pH 7.4. The membrane

was introduced for 5 min into the tube without shaking (figure 3.4). Nine concentrations were

tested and the color information was collected for four replicates each one. The corresponding

concentrations from 1-9 were the following: 10−7M , 5 ∗ 10−7M , 10−6M , 2.5 ∗ 10−6M , 5 ∗ 10−6M ,

7 ∗ 10−6M , 8.5 ∗ 10−6M , 10−5M and 10−4M respectively.
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Figure 3.4: Optical sensor reaction

3.5 Evaluation of the reaction using a spectrophotometer

A Colormunki spectrophotometer from X-Rite (Grand Rapids, Michigan, USA) was used as

reference measuring instrument in order to measure the reflectance of the sensing membranes before

and after the reaction. The illuminant was D65, with an observer angle of 2 degrees. The range of

the spectrum was 380 nm to 730 nm and the spectral interval was 10 nm. We collected the spectral

sensitivity curves of three linear detectors providing the CIE tristimulus values X, Y and Z, known

as the CIE standard observer.

With reference to the standard observer, the equations 3.1, 3.2, and 3.3 represent the tristimulus

values for a color with a spectral power distribution where is the wavelength of the equivalent

monochromatic light (nm).

X =

∫ 730

380
I(λ)x(λ)d(λ) (3.1)

Y =

∫ 730

380
I(λ)y(λ)d(λ) (3.2)

Z =

∫ 730

380
I(λ)z(λ)d(λ) (3.3)
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To achieve a universal measurement and in order to compare it to images captured by a smart-

phone, a transformation from the tristimulus XYZ values to sRGB color space (equation 3.4) was

needed.

Rlinear
Glinear
Blinear

 =

 3.2406 −1.5372 −0.4986
−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

 XY
Z

 (3.4)

The RGB values converted from the XYZ values collected before and after the reaction are

shown in table 3.1.

Table 3.1: RGB values for each reaction using a spectrophotometer

SULPHIDE CONCENTRATION Red intensity Green Intensity Blue Intensity

Blank (no reaction) 213 168 206

1 211 164 205

2 211 165 201

3 213 165 197

4 225 174 184

5 244 202 163

6 254 214 154

7 254 211 148

8 255 213 148

9 255 217 157

These RGB values corresponding to each sulphide concentration are represented in figure 3.5.
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Figure 3.5: RGB values for each reaction using a spectrophotometer

As we can observe, the color of the chromogenic reagent experiments a hue shift from violet

to yellow while the sulphide concentration in water is increasing. In a closer look at the case we

can notice that the intensity of the blue channel is decreasing while the intensity of red and green

increases. In an additive color mode sRGB the sum of R and B results in color yellow. In other

words, violet color is complementary to yellow color (figure 3.6).
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Figure 3.6: Complementary colors diagram

This approach leads to a suitable artefact calibration. The blue channel can be used as analytical

parameter. A system able to correlate the blue intensity to a sulphide concentration in water could

be designed by entering the data of the calibration into the system, represented in table 3.2.

Table 3.2: Blue intensity for each reaction

SULPHIDE CONCENTRATION Blue Intensity

Blank (no reaction) 206

10−7M 205

5 ∗ 10−7M 201

10−6M 197

2.5 ∗ 10−6M 184

5 ∗ 10−6M 163

7 ∗ 10−6M 154

8.5 ∗ 10−6M 148

10−5M 148

10−4M 157
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For instance, Bi = Blue intensity measurement of the optical sensor by the spectrophotometer

If Bi < 201 and Bi > 197 then

Concentration < 106 M

However, the repeatability of the system has a strong dependence on the measuring instrument

employed in the process. In this case, the instrument is a spectrophotometer that can be successfully

calibrated, also the intensity and color temperature of the illuminant are controlled and furthermore,

the distance to the object and angle are known. The use of a smartphone as a color measuring

instrument involves a great variability as mentioned in the introduction and as we will see in the

following experiments carried out.

3.6 Analysis of the requirements

Once the case has been analyzed using a traditional color measuring instrument, the require-

ments for designing the artifact can be defined:

• Capture an image using a smartphone: After the optical sensor reaction, the application must

allow the user to capture the image of the sensing membrane. For this purpose, the camera

software of the device will be used.

• ROI setection: In order to both, isolate the ROI of the image and reduce the image size.

• Color image processing: Collect and process the color values of the ROI.

• Quantification: Correlate the concentration of the substance to the color values gathered

previously by the device.

• Share results: Allow the user to know the concentration of the sulphide in water.
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CHAPTER 4

RESULTS

4.1 Image capture

Three different smartphones were used for capturing images of the optical sensor through repli-

cating the previous process, an iPhone 5s (Apple Inc., Cupertino, CA, USA), a Samsung Galaxy S4

Zoom (Samsung Electronics, Suwon, South Korea) and a LG Optimus L5 (LG electronics, Seoul,

South Korea). A light box was used in order to both, isolate the sensing membranes of the ambient

light and place the smartphones in an equal position while capturing the image. In this way, the

distance from the smartphone camera to the optical sensor was 5 cm. The illuminant inside the box

was provided by an array of D65 led (figure 4.1). The images were captured using the automatic

mode available in the camera software of the devices. The dimensions expressed in pixels of the

images acquired by the three smartphones were 2448x3264 (iPhone), 4608x3456 (Samsung) and

1920x2560 (LG). The color space embedded in the image is the sRGB for the three cases.

4.2 Image processing

For selecting the ROI, Adobe Photoshop CS6 software (Adobe Systems Inc., San Jose, CA,

USA) was used.
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Figure 4.1: Light box and ROI

The color information from the images captured after the reaction was collected. The average

of the RGB values of the ROI was obtained and are shown in tables 4.1, 4.2 and 4.3.

Table 4.1: RGB values and number of pixels for each reaction (Samsung)

SULPHIDE CONCENTRATION Red intensity Green Intensity Blue Intensity No. Pixels

1 129,18 85,75 127,2 5450

2 127,98 84,75 124,25 5530

3 125,95 81,09 123,04 5346

4 126,29 90,13 123,56 5486

5 126,45 94,22 118,01 5501

6 125,91 84,51 96,57 4969

7 130,97 98,26 82,97 4877

8 144,36 132,3 44,9 4855

9 141,51 131,1 47,33 4867
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Table 4.2: RGB values and number of pixels for each reaction (LG)

SULPHIDE CONCENTRATION Red intensity Green Intensity Blue Intensity No. Pixels

1 126,44 91,01 143,84 2326

2 126,75 89,92 143,91 2204

3 124,28 89,06 142,11 2214

4 126,37 96,01 140,85 2227

5 129,27 101,64 132,81 2266

6 125,55 87,33 109,23 2139

7 133,69 101,71 96,74 2041

8 153,99 130,08 60,39 2148

9 153,66 130,57 65,97 2464

IPHONE

Table 4.3: RGB values and number of pixels for each reaction (Iphone)

SULPHIDE CONCENTRATION Red intensity Green Intensity Blue Intensity No. Pixels

1 99,87 78,94 102,75 4500

2 98,44 78,31 99,54 4425

3 96,13 76,26 97,88 4433

4 99,05 86,97 100,99 4579

5 104,19 97,74 98,12 4657

6 100,69 79,43 75,9 4170

7 112,13 100,32 74,12 4214

8 140,93 143,69 63,87 4638

9 141,97 145,2 64,97 4705

A comparison among the values gathered by the three smartphones and the spectrophotometer

is represented in the figure 4.2.
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Figure 4.2: RGB values comparison among devices

The intensity of the RGB values collected by the spectrophotometer are significantly higher

than the smartphone ones. This is because of the illumination provided by the instrument. It is

specifically designed for this purpose and it results in a better performance of the color reflected.

Moreover, the intensity of the values collected by the smartphones are different among them.

Although the images were captured under equal circumstances by using a light box, the results

are strongly affected by the color interpretation from different devices technologies. Furthermore,

the automatic mode used for capturing images employs algorithms designed mainly to improve the

image quality, but not to preserve the color fidelity of the environment.

4.2.1 Normalized RGB

As we are interested in the chromaticity of a measured color, we can overlook the brightness

value (that is closely related with the intensity of light perceived) through normalizing the RGB
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values. All the previous values from each one of the four devices were normalized following the

equations 4.1, 4.2 and 4.3

r = R/R+G+B (4.1)

g = G/R+G+B (4.2)

b = 1 − r − g (4.3)

The results are represented in figure 4.3

Figure 4.3: Normalized RGB values comparison among devices

After normalizing RGB values the intensity responses are more similar. However the results

are not sufficiently satisfactory to create a common calibration data for the three smartphones.
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The design needs to improve the performance of the artefact in order to ensure the inter-phone

repeatability.

4.2.2 HSV color space

The HSV color space defines a color in hue, saturation and brightness. As observed before,

the optical sensor experiments a hue shift, from violet to yellow. In this kind of analysis the

hue parameter provides more useful information than brightness and saturation. The values rep-

resenting brightness and saturation can be ignored. Firstly because of their dependence on the

amount of light and secondly to reduce the space dimensionality. The RGB values gathered by the

three smartphones were converted into the HSV color space (ignoring the saturation and brightness

values) following the equations 4.4 - 4.7.

Cmax = max(R,G,B) (4.4)

Cmin = min(R,G,B) (4.5)

∆ = Cmax− Cmin (4.6)

H =


0 if Cmax = 0

(60 ∗ G−B
∆ + 360)mod360 if R = Cmax

60xB−R
∆ + 120 if G = Cmax

60xR−G
∆ + 240 if B = Cmax

(4.7)

The H values are shown in the table 4.4.
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Table 4.4: H values collected by the three smartphones

SULPHIDE CONCENTRATION H Samsung H LG H Iphone

1 302,74 280,24 292,74

2 305,18 280,93 296,89

3 303,89 279,83 295,14

4 304,53 280,62 291,70

5 315,71 293,19 356,47

6 342,52 325,62 8,54

7 19,11 8,07 41,36

8 52,72 44,67 62,07

9 53,37 44,20 62,42

The H parameter values are represented in a circular range from 0 to 360 (figure 4.4). That

explains for example, the reaction no. 6 where the color is close to 360 (a red color varying from

342 to 8).

Figure 4.4: H parameter representation

The comparison is represented in figure 4.5
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Figure 4.5: H parameter comparison

As it was already in the case of normalized RGB, the values gathered are not enough valid

to design a system with inter-phone repeatability. We can observe that the differences among

the colors measured by the three smartphones are not only caused by variations in lightness and

saturation. Actually, one of them is significantly different in hue from the rest ones, making it

impossible the use of a single calibration running in different devices.

4.2.3 White background calibration

The normalized blue collected by the three smartphones for each reaction is represented isolated

in figure 4.6
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Figure 4.6: Normalized blue for each reaction

In order to improve the accuracy of the artefact, the color values of the image background was

also collected. The optical sensors are printed on a white nylon substrate which color is an almost

neutral color. It could be used for calibrating the device. The color information of this white

background was measured by the four devices (the three smartphones and the spectrophotometer)

and are shown in the table 4.5.

Table 4.5: RGB values of the nylon substrate

Device Avg. Red Background Avg. Green Background Avg. Blue Background

Spectrophotometer 204 201 208

Iphone 150 184 151

LG 171 170 171

Samsung 157 168 160

The RGB values obtained using the spectrophotometer are defining an almost neutral color,

slightly bluish. The measurements collected using the LG smartphone are also defining a neutral
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color. However, the iPhone and the Samsung are defining a greenish color.

The normalized blue of the white background was used as reference value for the calibration.

The content of blue of the optical sensor was obtained by establishing a ratio between the blue

intensity of the white background and the blue intensity of the sensor.

Blue ratio = AVG. Normalized blue of the background / AVG. Normalized blue of the sensor

This ratio was obtained using the measurements of all the reactions for each of the smartphones.

The results are showed in table 4.6.

Table 4.6: Blue ratio of each reaction

Concentration Blue Ratio Samsung Blue Ratio LG Blue Ratio Iphone Blue Min. Blue Max.

1 1,13 1,19 1,17 1,13 1,19

2 1,12 1,19 1,16 1,12 1,19

3 1,13 1,20 1,16 1,13 1,20

4 1,10 1,16 1,13 1,10 1,16

5 1,06 1,09 1,05 1,05 1,09

6 0,95 1,02 0,95 0,95 1,02

7 0,81 0,87 0,83 0,81 0,87

8 0,42 0,52 0,59 0,42 0,59

9 0,45 0,56 0,59 0,45 0,59

The data is represented in figure 4.7
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Figure 4.7: Blue Ratio values from the three devices

36



CHAPTER 5

CONCLUSIONS

A smartphone can be used as a color measuring device for quantify the concentration of a substance

in colorimetric tests. In this research a set of experiments were carried out in order to evaluate the

artefact designed. The RGB values comparison among the spectrophotometer and the three smart-

phones shows how different is the intensity of the reflected light perceived. This fact, is affecting

the interpretation of color by each device. The color measured for each reaction is indicating a lack

of accuracy in terms of color values. Nevertheless, quantification accuracy is important, but not the

accuracy of the color measured with regard to the spectrophotometer. As described in the previous

work [1], the suplhide optical sensor used in the experiments can be analyzed employing a digital

camera and using the H parameter of the HSV color space. However this method is valid only when

the image is captured by a singular device. The comparison of the results obtained from images

captured by multiple devices is indicating a great range of error in the quantification. This results

are not satisfactory for an application with interphone-repeatability. As observed in the analysis

phase the blue channel can be used as analytical parameter in the quantification. This fact, reduce

the space dimensionality and ease the data processing of the device. Through normalizing the blue

channel, the range of error among the three smartphones is reduced. Furthermore, taking advan-

tage of the neutral color of the surface of the nylon membrane, the color pixels can be calibrated,

compensating the effect of the undesired color dominance in an image, reducing even more the

range of error, leading to a suitable application design with interphone-repeatability. Finally, the

research carried out is describing a method to digitize color measurement in quantitative analyses

and should be applied to multiples analysis of colorimetric tests.
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